CENTERS FOR DISEASE CONTROL

December 7, 1984 / Vol. 33 / No. 48

673 Measles - United States, First 39
 Weeks, 1984

681 Dermatitis among Hospital Workers Oregon
682 Sporotrichosis Among Hay-Mulching Workers - Oklahoma, New Mexico

Current Trends

Measles - United States, First 39 Weeks, 1984

During the first 39 weeks of 1984, a provisional total of 2,322 measles cases was reported in the United States (incidence rate 1.0/100,000 population) (Figure 1). This is an 84.3\% increase from the 1,260 cases reported during the same period in 1983 ($0.5 / 100,000$). Of the total, 1,620 cases (69.8%) were reported from five states - Texas (509), Michigan (462), California (308), Illinois (178), and Hawaii (163). Eleven states (California, Hawaii, Idaho, Illinois, Michigan, New Hampshire, New Mexico, Texas, Utah, Vermont, Washington) and New York City had incidence rates of $1.0 / 100,000$ population or higher.

Although the overall incidence rate increased, the number of states reporting measles was similar to the number reporting during the same period of 1983. Seventeen states reported no measles cases (indigenous or imported), compared with 16 states and the District of Columbia during the same period in 1983. However, the increase in cases was associated with an increase in the number of counties affected. In 1984, 183 (5.8\%) of the nation's 3,139 counties reported measles cases during the first 39 weeks, compared with 115 (3.7\%) during the same period in 1983.

FIGURE 1. Reported measles cases* - United States, 1982-1984

[^0]
Measles - Continued

Two hundred sixty-two cases (11.3\%) were associated with international or out-of-state importations - an average of 6.7 cases per week - compared with 220 (17.5) cases during the same period in 1983 (1).

During the first 39 weeks, detailed information was provided to CDC's Division of Immunization on 2,321 cases. ${ }^{*}$ Of these, 2,277 (98.1%) met the standard clinical case definition for measles, ${ }^{\dagger}$ and 919 (39.6%) were serologically confirmed. In most cases, onset of rash occurred from weeks 9 through 21, peaking at week 14 (134 cases) (Figure 2).

The age characteristics of reported cases changed from 1983 to 1984 (Table 1). In 1983, the highest incidence rates were reported for preschoolers. In contrast, the rates for the first 39 weeks of 1984 were highest for children 10 years to 14 years of age, who had a more than threefold increase in incidence rates, compared with the total for 1983. Of the 569 preschoolers who had measles in 1984, 155 (27.2% were under 12 months of age; 114 (20.0\%) were 12-14 months of age; 38 (6.7%) were 15 months of age; and 262 (46.0\%) were 16 months to 4 years of age. Persons 12-14 months of age accounted for 4.9% of the 2,321 cases.

Of the 2,321 cases, 819 (35.3%) were classified as preventable $\S(1)$ (Table 2). The highest proportion of preventable cases occurred among persons who were not of school age. Almost 75% of the cases among children 16 months to 4 years of age and adults 20-24 years of age were preventable. Although more than half the preventable cases occurred

[^1]FIGURE 2. Reported measles cases, by week of rash onset - United States, first 39 weeks, 1984

[^2]Measles - Continued
among persons 5-19 years of age, only 31.4% of cases occurring in that age group were considered preventable. The proportion of preventable cases in this group increased progressively with increasing age.
Reported by Div of Immunization, Center for Prevention Svcs, CDC.
Editorial Note: The increased number of cases from 1983 to 1984 and the increased geographic distribution indicate the need for careful and continued evaluation of the measles situation in the United States. Available information does not indicate the basic elimination

TABLE 1. Age distribution and estimated incidence rates* of reported measles cases ${ }^{\dagger}$ United States, 1983 and first 39 weeks, 1984

Age group	1983 (52 weeks)§			$1984\left(39\right.$ weeks) ${ }^{\text {I }}$		
	No.	\%	Rate	No.	\%	Rate
0-4 yrs.	451	31.5	2.6	569	24.5	3.2
5-9 yrs.	160	11.2	1.0	268	11.6	1.7
10-14 yrs.	195	13.6	1.1	618	26.6	3.5
15-19 yrs.	382	26.7	2.1	574	24.7	3.0
20-24 yrs.	163	11.4	0.8	166	7.2	0.8
$\geqslant 25 \mathrm{yrs}$.	80	5.6	0.1	126	5.4	0.1
Total age known	1.431	95.6	-	2,321	100.0	-
Total age unknown	66	4.4	-	-	-	-
Total	1,497	100.0	0.6	2,321	100.0	1.0

*Cases per 100,000 population extrapolating those with known age to total reported cases.
${ }^{\dagger}$ Provisional data.
§Total cases reported to MMWR in 1983.
ITotal cases reported to CDC's Division of Immunization during the first 39 weeks of 1984.

TABLE 2. Age distribution and preventability of measles cases - United States, first 39 weeks, 1984*

Age group	Cases	No. preventable (\%)	No. nonpreventable (\%)
$\leqslant 15$ mos.	307	$0(0)$	$307(100.0)$
16 mos. -4 yrs.	262	$191(72.9)$	$71(27.1)$
$5-9$ yrs.	268	$68(25.4)$	$200(74.6)$
$10-14$ rrs.	618	$167(27.0)$	$451(73.0)$
$15-19$ yrs.	574	$224(39.0)$	$350(61.0)$
$20-24$ yrs.	166	$128(77.1)$	$38(22.9)$
$25-29$ rrs.	73	$41(56.2)$	$32(43.8)$
$\geqslant 30$ yrs.	53	$0(0)$	$53(100.0)$
Total		$819(35.3)$	

-Provisional data.

Measles - Continued

strategy should be revised but does show a need for intensive application of the basic approach: achieving and maintaining high immunization levels, effective surveillance, and aggressive response to cases.

Of the 1984 measles patients, 38.1% had been adequately vaccinated. This is within expected limits, given the high vaccine coverage in the United States (2). The increased occurrence of measles in 1984 does not appear to be due to poor vaccine efficacy.

A substantial proportion of cases remains preventable. Greatest emphasis should be given to ensuring that school-aged individuals at all grade levels have evidence of measles immunity. In addition, assuring age-appropriate immunization of preschoolers remains important. Measles vaccine is indicated for all children 15 months of age or older unless there are contraindications. Measles immunity should also be a high priority in college-aged and other easily identifiable age groups.

References

1. CDC. Classification of measles cases and categorization of measles elimination programs. MMWR 1982;31:707-11.
2. CDC. Measles surveillance. Report no. 11, 1977-1981. September 1982.
(Continued on page 681)
TABLE I. Summary-cases of specified notifiable diseases, United States

Disease	48th Week Ending			Cumulative, 48th Week Ending		
	$\begin{gathered} \hline \text { Dec. } 1, \\ 1984 \\ \hline \end{gathered}$	$\begin{gathered} \text { Dec. } 3, \\ 1983 \end{gathered}$	$\begin{gathered} \text { Median } \\ 1979-1983 \end{gathered}$	$\begin{gathered} \hline \text { Dec. } 1, \\ 1984 \end{gathered}$	$\begin{gathered} \hline \text { Dec. } 3, \\ 1983 \\ \hline \end{gathered}$	$\begin{gathered} \text { Median } \\ 1979-1983 \\ \hline \end{gathered}$
Acquired Immunodeficiency Syndrome (AIDS)*	141	53	N	3.961	1.867	N
Aseptic meningitis	230	222	182	7.539	11.778	8.954
Encephalitis: Primary larthropod-borne \& unspec.)	22	40	23	1.068 81	1.735 83	1,430 83
Gonorrhea: Civilian	14,489	15,532	17.442	769,484	831.394	923,022
Military	176	240	309	18,950	22.245	24,753
Hepatitis: Type A	456	383	502	19,729	19,632	23.340
Type B	548	440	440	23,814	22.014	19.131
Non A, Non B	80	68	N	3.441	3.142	N
Unspecified	112	125	214	5.006	6.686	9,613
Legionellosis	13	20	N	600	699	N
Leprosy	7	4	5	216	221	202
Malaria	9	14	24	904	741	985
Measles: Total**	15	8	35	2.499	1.423	2,890
Indigenous	12	1	N	2.206	1.122	N
Imported	3	8	N	293	302	N
Meningococcal infections: Total	53	47	49	2,458	2.508	2,508
Civilian	53	47	49	2,453	2.493 15	2,493 15
Mumps	53	57	112	2.658	3.044	4.944
Pertussis	32	36	36	2,039	2.174	1.568
Rubella (German measles)	9	8	29	717	914	2,197
Syphilis (Primary \& Secondary): Civilian	541	521	573	25,447	29,788	28,595
Military	3	7	5	268	363	351
Toxic Shock syndrome	3	9	N	427	394	N
Tuberculosis	490	515	533	19,607	21,575	24.918
Tularemia	4	3	3	278	273	239
Typhoid fever	2	13	12	339	428	478
Typhus fever, tick-borne (RMSF)	9	8	5	853	1.087	1.087
Rabies, animal	85	87	89	4,955	5,602	5.831

TABLE II. Notifiable diseases of low frequency, United States

	Cum. 1984		Cum. 1984
Anthrax	1	Plague	30
Botulism: Foodborne (Calif. 2)	19	Poliomyelitis: Total	3
Infant (Calif. 4)	89	Paralytic	3
Other	6	Psittacosis (Hawaii 1)	83
Brucellosis (Mo. 1, Nebr. 2, Tex. 1, Idaho 1)	116	Rabies, human	3
Cholera	-	Tetanus (Mass. 1, N.Y. City 1, W.Va. 1, Calif. 1)	63
Congenital rubella syndrome	4	Trichinosis	61 35
Diphtheria (Colo. 1)	2	Typhus fever, flea-borne (endemic, murine) (Tex. 1)	35
Leptospirosis (Tex. 1)	30		

- The 1983 reports which appear in this table were collected before AIDS became a notifiable condition.
"Two of the 90 reported cases for this week were imported from a foreign country or can be directly traceable to a known internationally imported case within two generations.

TABLE III. Cases of specified notifiable diseases, United States, weeks ending
December 1, 1984 and December 3, 1983 (48th Week)

Reporting Area	AIDS	Aseptic Meningitis	Encephalitis		Gonorrhea (Civilian)		Hepatitis iViral), by type				Legionellosis	Leprosy
			Primary	Post-infectious			A	B	NA,NB	Unspecified		
	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	1984	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$	1984	1984	1984	1984	1984	$\begin{aligned} & \text { Cum } \\ & 1984 \end{aligned}$
UNITED STATES	3.961	230	1.068	81	769,484	831,394	456	548	80	112	13	216
NEW ENGLAND	135	7	46	2	21,262	21,638	11	45	1	8	2	11
Maine N.H.	2	2	7	-	927	1.042	-	6	-	-	-	.
$\begin{aligned} & \mathrm{N} . \mathrm{H} . \\ & \mathrm{Vt} . \end{aligned}$	2	2	7	-	676	675	1	2	-	-	-	
Mass	1 72	2	5 21	-	357 8945	408 9.371	1	2	-	8	2	
R.I.	72 6	2	21	-	8,945 1.528	9,371 1.195	8	19 5	-	8	2	6 4
Conn.	54	1	13	2	8.829	8.947	1	11	1	-	-	1
MID ATLANTIC	1,740	40	121	9	104,534	107,174	92	132	6	9	-	36
Upstate N.Y.	151	18	40	7	16,828	17.656	34	19	3	1	-	3
N.Y. City	1.270	7	11	-	40.502	42.788	23	67	.	5	-	31
N.J.	231	8	28	-	18.596	19.916	9	14	-	2	.	3
Pa	88	7	42	2	28,608	26.814	26	32	3	1	-	2
E.N. CENTRAL	173	60	301	18	110,884	120.762	27	54	6	8	4	6
Ohio	20	39	100	9	28,815	31.278	14	22	2	3	2	2
Ind.	24	6	79	-	12.011	11.659	4	10	2	1	.	-
III.	92	-	27	6	25.950	35.093	6	7	1	1	-	2
Mich.	27	15	60	-	31,929	31.989	3	15	1	3	2	2
Wis	10		35	3	12,179	10,743	-		-	-	-	.
W N CENTRAL	39	7	93	3	38,103	39,062	7	9	3	-	2	4
Minn.	9	1	41	-	5.748	5.489	-		-	-	-	2
lowa	2	1	31	-	4.197	4.225	2	3	1	-	1	1
Mo.	23	2	11	-	18,378	19.136	.	4	-	-	1	1
N Dak.	2	-	,	-	1869	19 412		4	-	-	1	1
S Dak.	-	1	2	1	920	968	5	1	-	-	-	.
Nebr	3	-	1	-	2,759	2,555	.	1	1	-	-	
Kans	2	2	7	2	5,732	6,277	-	-	1	-	-	-
S ATLANTIC	522	39	166	17	188,584	215,375	22	93	18	13	4	14
Del	5		1	-	3.748	3.974	2	-	18		1	
Md	46	1	31	-	22.237	27.761	3	13	8	1	-	1
DC	81	-	-	-	14.088	14.671	2	11	-	-	-	1
Va	33	5	28	5	18,569	19.625	2	6	2	6	1	4
W Va	5	1	40	-	2.483	2,388	-	-	-	1	-	
N.C	12	12	32	7	31.770	33.112	-	15	2	-	-	-
S.C.	8	1	5	-	20.023	19.780	-	9	-	-	-	-
Ga .	54	4	2	2	28.722	45,145	3	12	-	2	2	1
Fla.	278	15	27	3	46.944	48.919	10	27	6	3	-	7
E.S CENTRAL	24	3	51	8	70.694	69,798	3	17	1	1	-	-
Ky	10	1	13	-	8,394	8.265	1	5	-	-	-	-
Tenn.	6	2	16	1	28,273	28,722	1	8	1	-	-	-
Ala.	6	-	19	6	21.302	21,308	-	3	-	1	-	-
Miss	2	-	3	1	12,725	11,503	1	1	-	-	-	-
W S CENTRAL	277	52	99	4	104.400	114,891	79	44	7	47	-	21
Ark	1	-	-	2	9.263	9.247	10	1	-	4	-	1
La.	40	10	12	-	22.839	21.674	6	1	2	-	-	1
Okla	9	1	19	1	11.579	13.210	4	5	-	3	-	-
Tex.	227	41	68	1	60.719	70.760	59	37	5	40	-	19
MOUNTAIN	69	8	34	11	25.508	26.560	49	27	12	11	-	8
Mont.	-	-	-	-	965	1.129		-	-	-	-	-
Idaho	-	-	-	-	1,195	1.192	3	3	2	-	-	-
Wyo.	1	-	-	-	674	699	-	2	1	1	-	-
Colo.	36	1	12	-	7,317	7.412	7	3	4	c.	-	-
N. Mex.	1	-	-	-	3,084	3.283	12	-	-	-	-	-
Ariz.	18	3	12	3	7.167	7.567	16	13	2	4	-	6
Utah	7	3	10	8	1,206	1,269	4	3	1	1	-	1
Nev .	6	1	-	-	3.900	4,009	7	3	2	1	-	1
PACIFIC	982	14	157	9	105.515	116.134	166	127	26	15	1	116
Wash.	52	1	8	-	8.143	9.266	4	7	2	-	-	7
Oreg.	13	-	-	-	6.106	6.217	22	8	7	1	-	1
Calif.	903	9	146	9	86.827	95,526	139	110	16	14	1	89
Alaska	2	-	-	-	2,656	2,964	1	2	1	-	-	-
Hawaii	12	4	3	-	1,783	2,161	-	-	-	-	-	19
Guam	-	U	-	-	103	126	U	U	U	U	U	5
P.R.	56	1	3	2	3.098	2,615	7	10	-	10	-	5
V.I.	-	-	-	-	421	292	-	-	-	-	-	-
Pac. Trust Terr.	-	U	\cdot	-	-	-	U	U	U	U	U	-

TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending
December 1, 1984 and December 3, 1983 (48th Week)

Reporting Area	Malaria	Measles (Rubeola)					Meningococcal Infections	Mumps		Pertussis			Rubella		
		Indigenous		Imported *		Total									
	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	1984	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	1984	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$	Cum. 1984	1984	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	1984	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$	1984	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$
UNITED STATES	904	12	2,206	3	293	1.423	2.458	53	2,658	32	2.039	2.174	9	717	914
NEW ENGLAND	47	-	94	-	12	21	166	3	91	1	62	71	-	21	18
Maine	-	-	-	-	-	-	1	1	29	-	4	5	-	1	-
N.H.	-	-	33	-	3	3	10	-	18	-	9	10	-	1	5
Vt .	7	-	2	-	5	-	29	-	5	-	23	8	-		5
Mass.	26	-	49	-	-	9	66	2	20	1	18	36	-	18	6
R.I.	4	-	-	-	-	-	18	-	10	-	4	5	-	-	-
Conn.	10	-	10	-	4	9	42	-	9	-	4	7	-	1	2
MID ATLANTIC	142	7	131	-	45	119	425	8	310	8	191	371	-	224	145
Upstate N.Y.	28	7	38	-	14	18	138	3	94	1	104	115	-	99	30
N.Y. City	47	-	89	-	21	71	85	2	30	7	16	56	-	103	86
N.J.	37	-	4	-	3	27	83	3	137	-	13	19	-	18	3
Pa .	30	-	-	-	7	3	119	-	49	-	58	181	-	4	26
E.N. CENTRAL	81	-	617	-	75	706	398	18	1,008	1	450	490	-	96	133
Ohio	19	-	3	-	6	87	133	15	488	1	76	149	-	2	2
Ind.	4	-	2	-	1	406	51	1	63	-	231	58	-	5	26
III.	28	-	179	-	1	205	84	,	179	-	26	168	-	59	59
Mich.	16	-	411	-	54	7	82	2	185	-	31	42	-	22	17
Wis.	14	-	22	-	13	1	48	-	93	-	86	73	-	8	29
W.N. CENTRAL	24	-	49	-	9	8	154	-	106	-	125	133	-	39	42
Minn.	7	-	44	-	3	1	33	-	6	-	16	47	-	4	9
lowa	2	-	-	-	-	-	22	-	25	-	13	7	-	1	.
Mo.	8	-	5	-	1	1	47	-	10	-	20	23	-		.
N. Dak.	1	-		-	,	-	2	.	2	-	2	2	-	3	-
S. Dak.	1	-	-	-	-	,	6	-	-	-	9	8	-	.	-
Nebr.	3	-	-	-	-	-	13	-	4	-	13	4	-	-	-
Kans.	2	-	-	-	5	6	31	-	59	--	54	42	-	31	33
S. ATLANTIC	122	-	19	-	33	206	509	4	195	3	164	255	1	27	97
Del.	4	-	-	-	-	-	4		2		2	5	,	2	,
Md.	29	-	8	-	14	11	39	-	40	-	13	33	-	1	3
D.C.	1	-	-	-	5	-	8	-	-	-		-	-	-	.
Va .	33	-	1	-	4	23	64	1	18	-	15	50	1	1	2
W. Va.	1	-	-	-		-	5	1	39	-	11	9	.	1	2
N.C.	12	-	-	-	1	1	81	-	21	-	35	28	-	-	10
S.C.	2	-	-	-	i^{\prime}	4	56	-	5	-	1	14	-	-	1
Ga.	14	-	1	-	1	8	- 97	-	22	-	17	69	-	2	13
Fla.	26	-	9	-	8	159	155	3	48	3	70	47	-	21	68
E.S. CENTRAL	10	-	1	-	5	25	136	-	54	-	14	33	-	20	19
Ky.	1	-	1	-	2	1	49	-	11	-	2	14	-	14	18
Tenn.	2	-	-	-	2	-	37	-	17	-	7	8	-	-	-
Ala.	7	-	-	-	3	5	33	-	6	-	1	5	-	3	1
Miss.	-	-	-	-	-	19	17	-	20	-	4	6	-	3	-
	78	5	596	-	25	79	270	3	170	10	328	447	3	73	119
Ark.	-		8	-	-	13	43		8		19	26	3	3	-
La.	9	-	8	-	-	29	54	-	-	2	10	11	-		10
Okla.	10	-	-	-	8	1	28	N	N	-	238	328	-	-	-
Tex.	59	5	580	-	17	36	145	3	162	8	61	82	3	70	109
MOUNTAIN	27	-	113	-	32	31	81	9	253	-	122	230	1	22	36
Mont.	2	-	-	-	-	4	2	-	9	-	19	2	,	2	3
Idaho	2	-	-	-	23	10	10	1	10	-	7	16	-	1	8
Wyo.	7	-	-	-	-	1	3	-	2	-	6	6	1	3	8
Colo.	7	-	-	-	6	3	28	1	28	-	45	133	,	2	1
N. Mex.	1	-	88	-	-	,	8	N	N	-	12	13	-	1	-
Ariz.	10	-	-	-	1	1	16	7	188	-	24	29	-	4	8
Utah	5	-	25	-	2	12	8	-	11	-	7	31	-	7	7
Nev.	-	-	-	-	-	-	6	-	5	-	2	-	-	4	1
PACIFIC	373	-	586	3	57	228	319	8	471	9	583	144	4	195	305
Wash.	18	-	138	-	15	33	50	1	52	- 2	320	19	,	1	9
Oreg.	13 338	-	289		38	10 181	46 215	N	N	7	30 157	10	3	2	14
Calif.	338	-	289	3^{+8}	38	181	215	7	382	7	157	108	3	185	280
Alaska	4	-	159	-	4	2	-7	-	13	-	1	4	1	1	1
Hawaii	4	-	159	-	4	2	1	-	24	-	75	3	1	6	1
Guam	1	U	83	U	2	2	1	U	5	U	-	-	U	2	-
P.R.	4	75	196	-	-	96	6	1	171	-	1	14	1	20	7
V.I.	-	-	-	-	-	5	-	-	5	-	,	-	-		2
Pac. Trust Ter:.	-	U	-	U	-	-	-	U	-	U	-	-	U	.	2

TABLE III. (Cont'd.) Cases of specified notifiable diseases, United States, weeks ending
December 1, 1984 and December 3, 1983 (48th Week)

Reporting Area	Syphilis (Civilian) (Primary \& Secondary)		Toxic- shock Syndrome 1984	Tuberculosis		Tularemia Cum. 1984	Typhoid Fever Cum. 1984	Typhus Fever (Tick-borne) (RMSF) Cum. 1984	Rabies. Animal$\begin{aligned} & \text { Cum } \\ & 1984 \end{aligned}$
	$\begin{aligned} & \text { Cum. } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { Cum. } \\ & 1983 \end{aligned}$		$\begin{aligned} & \text { Cum } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 1983 \end{aligned}$				
UNITED STATES	25.447	29.788	3	19.607	21.575	278	339	$853+1$	4.955
NEW ENGLAND	487	635	-	584	654	7	20	6	47
Maine	10	19	-	30	32	-	-	-	13
N.H.	14	22	-	27	35	-	-	-	16
Vt .	1	3	-	8	10	-	-	-	-
Mass.	271	408	-	317	346	7	17	4	10
R.I.	22	23	-	48	60	.	-	.	-
Conn.	169	160	-	154	171	-	3	2	8
MID ATLANTIC	3.415	3.944	-	3.580	3,852	2	52	27	518
Upstate N.Y.	265	376	-	558	600	-	12	10	117
N.Y. City	2.064	2,265	-	1.480	1.547	2	17	3	-
N.J.	610	770	-	788	804	-	17	3	37
Pa	476	533	-	754	901	-	6	11	364
E.N. CENTRAL	1.263	1.596	1	2.565	2.909	8	56	64	208
Ohio	218	419	1	455	464	-	7	39	25
Ind.	126	136	-	315	329	-	11	7	21
III.	502	731	-	1.069	1.249	8	22	15-:	74
Mich.	345	222	-	578	718	-	7	3	21
Wis.	72	88	-	148	149	\cdots	9	-	67
W N CENTRAL	333	357	-	596	684	83	10	52	704
Minn.	86	134	-	105	141	1	3	1	87
lowa	11	23	-	62	65	-	-	6	140
Mo.	169	133	-	297	345	45	5	17	63
N Dak	9	2	-	12	6	-	-		139
S Dak	1	11	-	22	37	34	-	5	182
Nebr	15	15	-	30	23	-	-	5	44
Kans.	42	39	-	68	67	3	2	18	49
S ATLANTIC	7.257	8.065	1	4.115	4.292	8	40	394	1.479
Del	19	35	-	50	64	-	-	1	1.6
Md	444	486	-	400	342	1	2	23	846
D. C	316	355	-	161	176	1	6	-	-
Va	388	531	-	408	475	1	8	50-1	200
W Va	20	25	-	126	126	-	-	7	40
NC	794	809	1	616	692	1	1	175	25
S.C.	718	522	-	500	402	-	1	79	58
Ga	1.059	1.446	-	637	691	4	8	48	181
Fla	3.499	3.856	-	1.217	1.324	-	14	5	123
ES CENTRAL	1.924	2.002	\bullet	1.839	1.930	7	9	93.	242
Ky	94	163	-	436	485	1	2	19 :	51
Tenn.	485	534	-	535	591	5	2	48 -	78
Ala	625	778	-	536	483	-	2	15.	113
Miss.	720	527	-	332	371	- 1	3	11 :	,
W S CENTRAL	6.265	7.595	-	2.310	2,681	117	22	200	960
Ark	185	176	-	258	323	83	-	29	99
La.	1,102	1.547	-	337	421	7	1	4	57
Okla.	195	188	-	221	249	19	4	118	97
Tex.	4.783	5.684	-	1.494	1,688	8	17	49	707
MOUNTAIN	617	621	-	528	603	33	13	13	272
Mont.	3	7	-	17	42	3	1	8	121
Idaho	23	7	-	28	30	8	-	1	11
Wyo	4	12	-	4	12	1	-	3	23
Colo.	168	142	-	66	92	6	5	1	39
N. Mex.	91	168	-	100	108	$\bigcirc 2$	3	-	11
Ariz.	227	160	-	242	233	4	3	.	45
Utah	18	22	-	34	40	4	-	.	6
Nev .	83	103	-	37	46	5	1	-	16
PACIFIC	3,886	4.973	1	3.490	3.970	13	117	4	525
Wash.	133	188	-	184	220	3	3		3
Oreg.	108 3566	136 4.562	1	140	166	2	2	1	1
Calif.	3.566	4.562	1	2,901	3.290	8	103	2	513
Alaska	6	13	-	65	73	.	1	1	8
Hawaii	73	74	-	200	221	.	8	,	-
Guam		$87{ }^{\circ}$	U	5	8	-	-	-	-
P.R.	733	879	-	359	434	-	5	-	59
V.I.	11	19	,	3	2	-	3	-	5
Pac. Trust Terr.	-	-	U	-	2	-	3	.	-

TABLE IV. Deaths in 121 U.S. cities,* week ending
December 1, 1984 (48th Week Ending)

Reporting Area	All Causes, By Age (Years)						P\&1"• Total	Reporting Area	All Causes, By Age (Years)						P\&IF
	$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	$\geqslant 65$	45-64	25-44	1-24	<1			$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	$\geqslant 65$	45-64	25-44	1-24	<1	
NEW ENGLAND	767	541	154	38	18	16	59	S. ATLANTIC	1,704	1.061	400	141	66	36	78
Boston, Mass.	226	144	53	17	7	5	23	Atlanta, Ga.	171	91	47	18	8	7	3
Bridgeport, Conn. Cambridge, Mass	52	33	11	3	1	4	1	Baltimore, Md.	302	174	82	33	8	5	10
	25	17	8	-	-	-	6	Charlotte, N.C.	71	45	16	4	4	2	8
Fall River, Mass.	27	24	3	-	-	-	6	Jacksonville, Fla.	146	90	39	11	3	3	7
Hartford, Conn.	53	35	12	5	1	-	4	Miami, Fla.	449	340	67	28	10	4	4
Lowell, Mass.	35	22	9	.	4	-	3	Norfolk, Va.	62	31	19	3	6	3	8
	30	26	4	-	-	-	-	Richmond, Va.	85	55	19	6	2	3	8
New Bedford, Mass.	s. 36	29	6	-	-	1	4	Savannah, Ga.	47	28	12	6	1	-	5
New Haven, Conn.	59	46	6	3	1	3	1	St. Petersburg, Fla.	54	28	18	4	4	-	10
	60	38	16	5	-	1	5	Tampa, Fla.	83	48	23	6	3	3	9
Somerville, Mass	16	14	1	.	1	-	-	Washington, D.C.	195	105	47	20	17	6	5
Springfield, Mass.	41	29	11	-	1	.	2	Wilmington, Del.	39	26	11	2		-	1
Waterbury, Conn.	33	25	7	1	.		3								
Worcester, Mass.	74	59	7	4	2	2	7	E.S. CENTRAL	840	532	225	47	23	13	46
								Birmingham, Ala.	116	68	35	4	5	4	3
MID. ATLANTIC	2.736	1.793	596	219	57	71	131	Chattanooga, Tenn.	88	45	27	9	5	2	4
Albany, N.Y.	65	44	15	2	1	3	2	Knoxville, Tenn.	88	56	22	8	2	-	4
Allentown, Pa.	15	14	1	-	-	-	-	Louisville, Ky.	104	68	27	4	2	3	9
Buffalo, N.Y.	172	127	31	6	2	6	16	Memphis, Tenn.	195	128	51	11	4	1	16
	64	35	17	5	1	6	16	Mobile, Ala.	66	46	15	3	2	-	5
Elizabeth, N.J.	32	21	8	2	-	1	2	Montgomery, Ala.	56	40	11	2	1	2	1
Erie, Pa.t	45	30	9	4	-	2	5	Nashville, Tenn.	127	81	37	6	2	1	4
Jersey City, N.J. N.Y. City, N.Y.	63	36	17	8	1	1	3								
	1.528	998	330	137	33	30	60	W.S. CENTRAL	1.339	761	347	108	57	66	61
Newark, N.J.	96	49	22	13	5	7	10	Austin, Tex.	58	39	9	7	3	-	8
Paterson, N.J.	39	25	7	5	2	-	1	Baton Rouge, La	66	38	18	5	2	3	3
Philadelphia, Pa. \dagger	105	63	23	14	3	2	6	Corpus Christi, Tex.	32	20	8	-	2	2	1
Pittsburgh, Pa.t	61	44	15	1	1	-	-	Dallas, Tex.	188	97	52	19	6	14	2
Reading, Pa .	32	23	7	1	-	1	2	El Paso, Tex.	78	46	17	6	4	5	5
Rochester, N.Y.	151	107	28	5	6	5	11	Fort Worth, Tex.	93	56	22	4	3	8	6
	20	14	4	-	1	1	-	Houston, Tex.	213	109	64	19	11	10	4
Schenectady, N.Y. Scranton, Pa. \dagger	24	16	6	2	-	-	-	Little Rock, Ark.	95	59	22	4	3	7	7
Syracuse, N.Y.	112	73	29	5	-	5	2	New Orleans, La	132	65	41	12	10	4	2
Trenton, N.J.	49	27	13	7	1	1	5	San Antonio, Tex.	218	127	52	21	10	8	12
Utica, N.Y.	26	19	6	1	-	.	2	Shreveport, La.	61	42	11	4	1	3	2
Yonkers, N.Y.	37	28	8	1	-	-	4	Tulsa. Okla.	105	63	31	7	2	2	9
E.N. CENTRAL	2.580	1.837	458	117	75	84	108	MOUNTAIN	700	453	154	54	20	19	31
	130	83	31	7	1	8	8	Albuquerque, N.Mex.	95	66	17	7	5	-	8
Akron, Ohio Canton, Ohio	38	26	9	1	1	1	6	Colo. Springs, Colo.	36	21	8	4	2	1	2
Chicago, III §	458	412	5	8	11	13	11	Denver, Colo.	117	87	19	8	2	1	3
Cincinnati, Onio	151	98	35	7	7	4	9	Las Vegas, Nev.	90	51	29	5	2	3	2
Cleveland, Ohio	181	127	35	8	4	7	3	Ogden, Utah	24	19	3	2	-	-	1
Columbus, Ohio	128	70	40	7	3	8	10	Phoenix, Ariz.	164	100	39	18	4	3	5
Dayton, Ohio	126	85	30	4	5	2	1	Pueblo, Colo.	24	20	3	-	-	1	1
Detroit, Mich.Evansville, Ind	358	228	69	39	13	9	6	Salt Lake City, Utah	45	21	13	4	2	5	-
	74	51	16	3	1	3	2	Tucson, Ariz.	105	68	23	6	3	5	9
Evansville, Ind Fort Wayne, Ind.	78	55	19	4	-	.	8								
Gary, Ind.Grand Rapids, Mich.	23	12	9	2	-	-	-	PACIFIC	1,802	1.198	393	114	41	46	106
	h. 54	42	4	6	-	2	5	Berkeley. Calif.	28	25	2	1	-	-	-
Grand Rapids, Mich Indianapolis, Ind.	192	125	45	6	9	7	7	Fresno, Calif.	95	69	18	3	1	4	11
Madison, Wis Milwaukee, Wis	48	30	8	6	3	1	8	Glendale, Calif.	15	12	3	-	-	-	-
	185	133	33	5	5	9	10	Honolulu, Hawaii	81	48	23	7	1	2	8
Peoria, III.	72	50	13	1	1	7	9	Long Beach, Calif.	82	63	16	2	1	-	2
Rockford, III.	62	45	15	,	2	-	9	Los Angeles, Calif.	409	254	87	34	18	6	10
South Bend, IndToledo, Ohio	54	39	7	3	4	1	-	Oakland, Calif.	71	48	16	3	1	3	5
	111	80	29	.	1	1	3	Pasadena, Calif.	31	21	8	1	-	1	3
Youngstown, Ohio	57	46	6	-	4	1	1	Portland, Oreg.	118	87	18	7	1	5	5
								Sacramento, Calif.	156	109	33	9	2	3	8
W N CENTRAL	835	593	158	40	22	22	56	San Diego, Calif.	148	87	46	7	4	4	22
Des Moines, Iowa	74	55	15	2	1	1	7	San Francisco, Calif.	176	113	38	16	3	6	8
Duluth, Minn	23	18	5	2	-	-	1	San Jose, Calif.	188	116	46	16	3	7	16
Kansas City, Kans.	44	26	11	2	3	2	4	Seattle, Wash.	111	75	23	6	4	3	3
Kansas City, Mo.	94	68	18	1	3	4	6	Spokane, Wash.	54	39	11	1	2	1	5
Lincoln, Nebr.	46	37	6	1	-	2	3	Tacoma, Wash.	39	32	5	1	-	1	-
Minneapolis, Minn	103	72	20	7	2	2	8		13,303	+8,769					
Omaha, Nebr.	130	96	20	8	3	3	7	TOTAL	13,303	8,769	2,885	878	379	373	676
St. Louis, Mo.St Paul, Minn.	164	112	32	10	7	3	4								
	75	53	17	3	1	1	6								
St. Paul, Minn Wichita, Kans	82	56	14	6	2	4	10								

[^3]§ Data not available. Figures are estimates based on average of past 4 weeks.

Epidemiologic Notes and Reports

Dermatitis among Hospital Workers - Oregon

In November 1981, complaints of skin and respiratory irritation were reported to the Na tional Institute for Occupational Safety and Health (NIOSH) by members of the housekeeping staff, which cleaned and disinfected patients' rooms at a community hospital in Oregon. The cleaning solutions the workers used contained a variety of irritating and toxic chemicals, including phenol, carbitol, ammonia, alcohols, detergents, waxes, and scrubbing compounds. Phenol was the principal ingredient of a germicidal solution applied to all objects and floors, when cleaning patients' rooms.

In January 1982, investigators from NIOSH interviewed 23 of 28 housekeeping employees who used these cleaning agents; for purposes of comparison, 11 workers selected at random from a list of employees not involved in housekeeping were also interviewed (1). Limited physical examinations were performed.

The 23 housekeeping employees reported the following symptoms with significantly greater frequency than did the employees not engaged in housekeeping: cough (43% for housekeeping employees and 9\% for others), history of producing phlegm (56\% and 0\%), itching of the external ear (61% and 0%), sinus congestion (65% and 18%), and light-headedness while at work (56% and 0%). Four housekeeping employees had severe dermatitis of the hands and feet, and another four reported past histories of dermatitis. The onset of dermatitis for each of these patients was associated with a history of exposure of the skin to cleaning agents and disinfectants while at work. In two of the employees with dermatitis, transfer from the housekeeping department and leave reportedly resulted in marked improvement. Two of 11 nonhousekeeping employees reported histories of mild skin rash, but neither had evidence of current skin disease.

Changes in work practices were recommended to reduce skin exposures and associated dermatitis, including use of protective gloves and changes in application procedures (e.g., application of the germicide with a cloth rather than by spray bottle).

In April 1982, investigators collected air samples for analysis to determine the presence of airborne chemicals released from the cleaning agents. Post-shift urine samples were also collected from housekeeping employees to test for excretion of phenol. The results of the environmental tests (performed after NIOSH-recommended changes in work practices were being implemented) revealed that the workers were exposed to assorted airborne vapors of ammonia, carbitol, isopropyl alcohol, and petroleum distillates; however, concentrations were at very low levels. Results of tests for butyl cellosolve, cellosolve, ethanolamine, ethyl alcohol, formaldehyde, and phenol, were all below the lower limits of analytical detection (2). The mean urinary excretion among 23 housekeeping employees was $26.5 \mathrm{mg} / \mathrm{g}$ of creatinine (range: nondetectable to $187 \mathrm{mg} / \mathrm{g}$ creatinine); among eight nonhousekeeping employees, the mean urinary excretion of phenol was $9.8 \mathrm{mg} / \mathrm{g}$ creatinine) (range: nondetectable to $12.2 \mathrm{mg} / \mathrm{g}$ of creatinine) ($\mathrm{p}>0.05$]).
Reported by US Public Health Service Region X Office, Seattle, Washington; Hazard Evaluations and Technical Assistance Br, Div of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety and Health, CDC.
Editorial Note: Workers in hospitals are exposed to a wide variety of chemicals known to be hazardous, including waste anesthetic gases (3), ethylene oxide (4), and formaldehyde (5). In this investigation, NIOSH found dermatitis, as well as an increased incidence of symptoms of respiratory irritation, among housekeeping workers in a hospital. Workers were exposed to

Dermatitis - Continued

cleaning compounds containing phenol and were excreting phenol in their urine. Phenol has previously been shown to cause contact dermatitis following repeated exposure (6,7). It is possible that, in this episode, exposure to cleaning agents containing other solvents and irritating chemicals may also have contributed to the occurrence of dermatitis. Relatively simple precautions, such as work practices that limit the dispersal of solvents in the air and wearing personal protective gear, appear effective in reducing the hazard, by reducing contact of solvents with the skin.
References

1. National Institute for Occupational Safety and Health. Health hazard evaluation report no. HETA 82-053-1263. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1983.
2. National Institute for Occupational Safety and Health. NIOSH manual of analytical methods. Vol 1-7, 2nd ed. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1977. (DHEW [NIOSH] publication no. 77-157).
3. National Institute for Occupational Safety and Health. Health hazard evaluation report no. HETA 82-016-1206. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1982.
4. National Institute for Occupational Safety and Health. Health hazard evaluation report no. HETA 81-350-932. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1981.
5. National Institute for Occupational Safety and Health. Health hazard evaluation report no. HETA 82-205-1314. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1983.
6. Proctor NH, Hughes JP. Chemical hazards of the workplace. Philadelphia: JB Lippincott Company, 1978.
7. National Institute for Occupational Safety and Health. Occupational diseases: a guide to their recognition. Revised ed. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1977. (DHEW [NIOSH] publication no. 77-181).

Sporotrichosis Among Hay-Mulching Workers Oklahoma, New Mexico

Between June and September 1983, 12 cases of cutaneous sporotrichosis occurred among persons who had worked on three different hay-mulching crews based in Oklahoma and New Mexico. Each crew had used hay from the same fields in south-central Oklahoma to mulch road banks and building sites.

A private physician notified the Oklahoma Department of Health of one worker hospitalized for investigation of possible pulmonary sporotrichosis. Other cases were identified through reports from physicians and a survey of the six hay-mulching companies operating in Oklahoma and New Mexico. A case was defined as a person with a cutaneous lesion and serologic evidence of Sporothrix schenckii infection.

Three of five workers in a crew working in northern Texas developed S. schenckii infections; in another crew working in southern New Mexico, four of 12 workers developed infections; in a third crew working in central New Mexico, five of 21 workers who responded to a questionnaire developed infections. None of the patients had been exposed outside their work to roses, sphagnum moss, or hay. Ten of 12 patients had one or more lesions on the upper extremities; one of the remaining two had a single lesion on the upper chest; and the other, a single lesion on the lateral eyelid. Two additional workers had positive serologic tests but no clinical manifestations.

A questionnaire was administered to members of the three crews; 79% of the workers responded. No association was found between clinical infection and duration of work or work duty (loader, hay-blower, or driver). Exposure to fresh hay was not associated with infection in six workers who cut and baled hay at the implicated fields.

Sporotrichosis - Continued

The prairie hay used by the crews had been cut in August 1982. Normally, prairie hay is dried for 1-2 days in the field before baling, but because of rain, this crop was left in the field for 5-6 weeks before being baled; after baling, it was stored until May 1983. Samples obtained from soil and plants at the implicated field 2 months after the hay mulching were negative for S. schenckii.
Reported by W Cook, MD, DJ Sexton, MD, Oklahoma City, B Gildon, J Booher, Comanche County Health Dept, P Hawkins, MPH, T Rickman, G Istre, MD, State Epidemiologist, Oklahoma State Dept of Health; V Ornelus, MD, P Acerra, Lovinn, I Nash, MD, Albuquerque, S Kearns, W Ricer, Carlsbad, R Ferguson, J Mann, MD, H Hull, MD, State Epidemiologist, New Mexico Health and Environment Dept; Div of Mycotic Diseases, Special Pathogens Br, Div of Bacterial Diseases, Center for Infectious Diseases, Div of Field Svcs, Epidemiology Program Office, CDC.
Editorial Note: S. schenckii is a dimorphic fungus. It is found worldwide in soil, plants, and decaying vegetation. Cutaneous sporotrichosis follows inoculation of spores into the skin and subcutaneous tissue. Infections of joints, central nervous system, and lungs occur, but are rare. Sporotrichosis following occupational exposure has been described previously among forestry workers (1), horticulturists, and miners (2,3). Infection following occupational exposure to prairie hay has not previously been reported, but two outbreaks have been described among children playing in old prairie hay $(4,5)$. Health professionals attending workers with occupational exposure to decaying plant matter, including hay, should be alert for sporotrichosis as a cause of chronic skin disease.

References

1. Powell KE, Taylor A, Phillips BJ, et al. Cutaneous sporotrichosis in forestry workers. Epidemic due to contaminated sphagnum moss. JAMA 1978;240:232-5.
2. Conant NF. Medical mycology: Sporotrichum schenckii. In: Dobos RJ, Hirsch JG, eds. Bacterial and mycotic infections of man. 4th ed. Philadelphia: JB Lippincott Company, 1965:853-6.
3. CDC. Sporotrichosis associated with Wisconsin sphagnum moss. MMWR 1982:31;542-4.
4. Dahl BA, Silberfarb PM, Sarosi GA, Weeks RJ, Tosh FE. Sporotrichosis in children. Report of an epidemic. JAMA 1971;215:1980-2.
5. Laur WE, Posey RE, Waller JD. A familial epidemic of cutaneous sporotrichosis occurring in North Texas. Cutis 1979;23:205-8.

Erratum: Vol. 33, No. 1 S
In the MMWR Supplement, "Adult Immunization: Recommendations of the Immunization Practices Advisory Committee (ACIP)," there is an error in Appendix 4. Page 64S, line 1, column 4, should read: Bivalent or tetravalent polysaccharide vaccine.

The Morbidity and Mortality Weekly Report is prepared by the Centers for Disease Control. Atlanta, Georgia, and available on a paid subscription basis from the Superintendent of Documents, U.S. Govermment Printing Office, Washingt on, D.C. 20402, (202) 783-3238.

The data in this report are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday.

The editor welcomes accounts of interesting cases, outbreaks, environmental hazards, or other public health problems of current interest to health officials. Such reports and any other mat ters pertaining to editorial or other textual considerations should be addressed to: ATTN: Editor. Morbidity and Mortality Weekly Report, Centers for Disease Control, Atlanta. Georgia 30333.

Director, Centers for Disease Control
James O. Mason, M.D., Dr.P.H.
Director, Epidemiology Program Office Carl W. Tyler, Jr., M.D.

Editor

Michael B. Gregg, M.D.
Assistant Editor
Karen L. Foster, M.A.

ฉU.S. Government Printing Office: 1984-746-149/10028 Region IV

DEPARTMENT OF

HEALTH \& HUMAN SERVICES

Public Health Service
Centers for Disease Control
Atlanta GA 30333
Official Business
Penalty for Private Use $\$ 300$

Postage and Fees Paid U.S. Dept. of H.H.S. HHS 396

x

NFWV75 8129 F NEWHOUSE DIVISION

[^0]: *Shaded area represents maximum and minimum weekly values during 5-year period, 1977-1981.

[^1]: -The difference between this number and the 2,322 cases reported to MMWR reflects delays in reporting.
 ${ }^{\dagger}$ Clinical case definition is fever (38.3 C [101 F] or higher, if measured), generalized rash of 3 days' duration or longer, and at least one of the following: cough, coryza, or conjunctivitis.
 $\S_{\text {A case }}$ is considered preventable if measles occurs in a U.S. citizen: (1) at least 16 months of age, (2) born after 1956, (3) lacking adequate evidence of immunity to measles (documented receipt of live measles vaccine on or after the first birthday and at least 2 weeks before onset of illness or physiciandiagnosed measles or laboratory evidence of immunity), (4) without a medical contraindication to receiving vaccine, and (5) with no religious or philosophic exemption under state law.

[^2]: -Rash onset in 1983.

[^3]: - Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included
 - Pneumonia and influenza
 \dagger Because of changes in reporting methods in these 4 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
 \uparrow Total includes unknown ages.

